DanGray, а я ведь кстати про бактерии не шутил.
Движение бактерий позволяет им выбрать оптимальные условия существования. Несмотря на малый размер, бактерии располагают множеством датчиков, регистрирующих параметры внешней и внутренней среды. Они измеряют температуру среды, освещенность, рН снаружи и внутри клетки, концентрации многих метаболитов, а к изменениям вязкости среды бактерии чувствительнее, чем все известные в технике вискозиметры. Датчики - особые белки-рецепторы, локализованные, как правило, во внутренней бактериальной мембране. С рецепторов сигнал передается на особые белки, имеющиеся в цитозоле. Эти последние взаимодействуют с каким-то из белков базального тела, ответственным за переключение направления вращения мотора.
Сигналы могут быть двух родов. Одни вызывают переключение, другие запрещают его. Если бактерия плывет в благоприятном направлении (например, в сторону увеличения концентрации глюкозы), то рецептор глюкозы связывает этот сахар и посылает сигнал, запрещающий изменение направления движения. Если же концентрация глюкозы падает, то рецептор теряет глюкозу и посылает противоположный сигнал. В результате бактерия меняет направление движения и получает шанс попасть в более благоприятные для нее условия.
Существует сложная система обработки и интерпретации сигналов, между которыми устанавливается жесткая иерархия. В целом этот механизм позволяет бактерии неплохо ориентироваться в среде обитания. Поэтому когда наблюдаешь за движением бактерий под микроскопом, создается впечатление, что каждая из них куда-то спешит по каким-то только ей известным делам. Совсем иначе выглядит поле зрения микроскопа с так называемыми тенями бактерий. "Тени" - это как бы выпотрошенные клетки, из которых удален цитозоль со всеми белками, в том числе и с теми, которые передают сигналы рецепторов. В то же время мембраны "теней" по-прежнему целы, так как способны самозалечиваться после механических повреждений. Создав можно привести "тени" в движение. Но это движение всегда в каком-то одном направлении. Сигналы не поступают на мотор, и жгутик вращается в одну и ту же сторону. Под микроскопом вместо кипения жизни вы видите зрелище, достойное фильма ужасов, где покойники встают из своих гробов. "Тени" плывут по прямой, чтобы остановиться, когда снизится и уйдет под пороговую величину.
ГДЕ ЕЩЕ В БИОЛОГИИ ИСПОЛЬЗУЮТСЯ МОТОРЫ
Моторы, питаемые , используются не только у бактерий, снабженных жгутиками. На том же принципе устроен механизм скольжения многоклеточных цианобактерий по твердой поверхности. Цианобактерии лишены жгутиков, и тем не менее их движение поддерживается энергией . По-видимому, их моторы вращают белковые тяжи, спрятанные в периплазме.
Так же, вероятно, вращаются хлоропласты в клетках некоторых эукариотических водорослей. Но, пожалуй, самый экстравагантный пример движения за можно найти у простейших, живущих в кишечнике термита. Эти одноклеточные эукариоты вступили в симбиоз с подвижными бактериями. В результате сотни бактерий прикрепились снаружи к оболочке простейшего. Вращение их жгутиков приводит в движение клетку-хозяина, причем этот хозяин каким-то неизвестным образом может синхронизировать и регулировать направление вращения бактериальных жгутиков.
ЧИТАТЬ ВНИМАТЕЛЬНО
Так что стоит, ли мне бояться твоих "зёрнышек"?